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Abstract

Recently, hashing based Approximate Nearest Neighbor

(ANN) techniques have been attracting lots of attention in

computer vision. The data-dependent hashing methods,

e.g., Spectral Hashing, expects better performance than

the data-blind counterparts, e.g., Locality Sensitive Hash-

ing (LSH). However, most data-dependent hashing methods

only employ a single hash table. When higher recall is de-

sired, they have to retrieve exponentially growing number of

hash buckets around the bucket containing the query, which

may drag down the precision rapidly. In this paper, we pro-

pose a so-called complementary hashing approach, which

is able to balance the precision and recall in a more effec-

tive way. The key idea is to employ multiple complementary

hash tables, which are learned sequentially in a boosting

manner, so that, given a query, its true nearest neighbors

missed from the active bucket of one hash table are more

likely to be found in the active bucket of the next hash table.

Compared with LSH that also can exploit multiple hash ta-

bles, our approach is more effective to find true NNs, thanks

to the complementarity property of the hash tables from our

approach. Experimental results on large scale ANN search

show that the proposed method significantly improves the

performance and outperforms the state-of-the-art.

1. Introduction

Similarity search, also known as nearest neighbor search,

addresses the problem of, given a query point, finding

its most similar points from the database. It is a funda-

mental problem in many practical applications, such as k-

nearest neighbor classification, Content Based Image Re-

trieval (CBIR) and so on. With the growth of the size of

the database, the naive approach adopting linear scan be-

comes impractical. Therefore, recently a lot of research ef-

forts have been devoted to investigate the alternative solu-

tion - Approximate Nearest Neighbor (ANN) search, which

trades off a little search accuracy to greatly speed up the

search process.

Among existing ANN methods, hashing based methods

have demonstrated promising performances [1, 8, 19, 20,

21]. The basic idea is to construct hash functions to map

the data points to finite number of hash codes, so that sim-

ilar data points have larger probability of collision, i.e.,

having the same hash code. Without loss of generality, a

hash code is considered to be made of a group of hash

bits in this paper. Hashing based methods can be roughly

divided into two categories, data-blind hashing and data-

dependent hashing, according to whether they make use of

the database to construct the hash functions.

Locality Sensitive Hashing (LSH) [1, 3, 7] is one of the

best known methods in the first category. It produces each

hash bit typically by projecting the data point to a random

hyperplane and then conducting random thresholding. Mul-

tiple hash tables are independently constructed, aiming to

enlarge the probability that similar data points are mapped

to similar hash codes. In practice, due to the data-blindness

and independence, LSH suffers from severe redundancy of

the hash bits as well as redundancy of the hash tables. Con-

sequently, on the one hand, LSH may need very long hash

codes to encourage only similar points to be projected to

similar hash codes, and on the other hand, lots of hash ta-

bles are needed to access enough points for the satisfactory

recall. This leads to many practical problems, such as the

increase of the query time and the big storage overhead for

the large number of hash tables.

A representative method in the second category is Spec-

tral Hashing (SH) [21]. It can produce very compact hash

codes by thresholding with nonlinear functions along the

principal directions of the data. Given a query, it retrieves

all the points whose hash codes fall within a Hamming ball

centered at the query’s hash code, i.e., the Hamming dis-

tances between the retrieved points and the query are not

larger than the radius of the ball. When higher recall is de-

sired, they usually have to increase the radius of the Ham-
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Figure 1. Illustration of the differences using (a) single hash table (e.g., spectral hashing), (b) multiple random hash tables (LSH), and (c)

multiple learned hash tables (our approach). Suppose the true neighbors of the query (the red bullet •) distribute in the shaded area. To

cover the shaded region, (a) requires a big Hamming ball, (b) needs many small balls, while fewer small balls are enough shown in (c). We

illustrate the inverse projection of the Hamming ball as the ball in the data space centered at the star, and the balls with R = 0 corresponds

to the active hash buckets hit by the query in different hash tables.

ming ball to retrieve more points. We visually illustrate the

arising problem in Fig. 1(a). A big Hamming ball with ra-

dius 2 is needed to cover the shaded region, which contains

the true near neighbors. Since the ball grows homogenously

and explosively, a large piece of unshaded area, which con-

tains many irrelevant points, is also covered by the ball.

This may drag down the precision rapidly.

In this paper, we present the complementary hashing,

which indexes data points with multiple complementary

hash tables and is able to balance the precision and recall

in a more effective way. The hash tables are sequentially

learned from the data in a boosting manner, so that, given

a query, its true nearest neighbors missed from the active

bucket of one hash table are very likely to be found in the

active bucket of the subsequent hash table. Different from

LSH, which employs multiple independent hash tables, the

proposed method constructs the hash functions in a comple-

mentary manner. Compared with the methods adopting a

single hash table (e.g., spectral hashing), employing mul-

tiple hash tables is more helpful to balance the precision

and recall. Taking Fig. 1(c) as an example, where the query

falls in three hash buckets belong to three different hash ta-

bles, indicated by three small balls. If we properly learn the

hash tables from the data, the shaded area, which contains

the true near neighbors, will be covered by a smaller num-

ber of small Hamming balls. Thus many irrelevant points

are avoided and accordingly the search performance is im-

proved. In contrast, LSH adopts the scheme, illustrated

in Fig. 1(b), which is not as efficient as our method and

results in requiring more hash tables to guarantee the recall.

We summarize the contributions in this paper as follows.

We propose the complementary hashing approach to effec-

tively balance the precision and the recall, and then present

a boosting algorithm to effectively learn the multiple hash

tables in a sequential order. Moreover, an incremental in-

dexing scheme is proposed, so that only a fraction of data

points are needed to be indexed by the subsequent hash ta-

bles. This from another point of view means the points can

be assigned with hash codes of various length, so that we are

able to trade off the search efficiency and storage cost. We

experimentally illustrate the advantages of adopting multi-

ple hash tables. Experimental results justify the superiority

of our approach over existing representative methods.

2. Related Work

We first introduce some annotations for later conve-

nience. Suppose the database X consists of N data points

{xi}Ni=1, xi ∈ R
d. A is the similarity matrix and aij de-

notes the similarity of xi and xj . A hashing method adopts

K hash functions to map a data point x to a K-bit hash

code H(x) = [h1(x), . . . , hK(x)], where each hash func-

tion maps the data point to a single bit hk(x) ∈ {−1, 1}.

A hash code is also referred as a hash bucket, which con-

tains the points being mapped to it. We define the com-

bination of the K hash functions as a hash projection, de-

noted as H . Recently, many ANN search methods, e.g.,

kd-trees [2, 9] are proposed. In the following, we mainly

review the closely-related hashing based methods.

2.1. Locality Sensitive Hashing and Extensions

Locality Sensitive Hashing (LSH) constructs L hash ta-

bles using the hash projections {Hl}Ll=1. The k-th hash

function of the l-th hash projection is in the form of:

hl
k(x) = sgn((wl

k)
T
x+ blk), (1)

where w
l
k is a random hyperplane and blk is a random

threshold. With these hash projections, LSH projects each



data point in the database to L K-bit hash codes. To per-

form search, a query is mapped to L hash codes in the

same way and data points having the same hash codes are

retrieved from each hash table. In practice, because LSH

suffers from severe redundancy of the hash bits, K has to

be sufficiently large to achieve satisfactory precision, which

requires large L to maintain reasonable probability of colli-

sion (projected to the same hash code) for the similar points.

This leads to the big storage burden of holding the the hash

tables and high computational cost of projecting the query

to the hash codes.

There are some works extending LSH from different per-

spectives. [4, 13, 16] try to reduce the number of desired

hash tables of LSH without lost of the search accuracy. [8]

presents a supervised version of LSH. In [10], Kulis et al.

propose a kernelized version of LSH. However, they still

suffer from the redundancy in the hash codes.

2.2. Spectral Hashing and Extensions

Spectral Hashing (SH) is proposed by Weiss et al., to

learn hash functions from the data by minimizing the fol-

lowing objective function:

J(H) =
∑N

i,j=1
aij‖H(xi)−H(xj)‖

2 (2)

s.t.
∑N

i=1
H(xi) = 0 (3)

1

N

∑N

i=1
H(xi)H(xi)

T = I (4)

H(xi) ∈ {−1, 1}K

The first two constraints are added to provide the follow-

ing two good properties. 1) The hash codes are efficient:

each hash bit partitions the data points into two balanced

parts and 2) The hash codes are compact: the bits of a hash

code are uncorrelated. As shown in [21], this minimiza-

tion problem can be converted to an eigenvalue decompo-

sition problem and efficiently solved. Thanks to the data-

dependent hash functions, SH is able to produce better hash

codes than LSH in practice. Many extensions of SH have

been proposed in recent years, including the kernelized ver-

sions [6, 15], a semi-supervised scheme [19], a speed-up

scheme [11] and a self-taught scheme which trains a classi-

fier per bit [22].

More recently, Unsupervised Sequential Projection

Learning for Hashing (USPLH) is proposed by Wang et al.

[20]. Its basic idea is to learn the hash functions sequen-

tially, in a way that the subsequent hash functions are in

charge of correcting the “errors” made by the previous hash

functions. Since USPLH, as well as SH and its extensions,

only employs a single hash table, they suffer from the prob-

lem that we described in the Introduction Section. Com-

pared with USPLH, instead of constructing a single hash

table by learning multiple hash bits one by one, our algo-

Table 1. Comparison of four representative hashing methods with

our method.

Method
Data

dependent?

Multiple

hash tables?

Complementary

hash tables?

LSH no yes no

SH yes no -

USPLH yes no -

PCH yes yes no

Our method yes yes yes

rithm learns multiple hash tables one by one, so that can

balance the precision and the recall more effectively.

There are two previous works on the data dependent

hashing approaches with multiple hash tables. [17] presents

a k-means based LSH, constructing multiple hash tables

by using different randomly generated seeds for k-means.

Principal Component Hashing (PCH) [14] constructs hash

tables independently along the principle axes of the data

points. Unlike our proposed method which learns comple-

mentary hash buckets, the hash buckets of above two ap-

proaches are independent to each other.

Finally, we compare the proposed method with four rep-

resentative hashing methods in Tab. 1.

3. Complementary Hashing

The goal of the complementary hashing is to minimize

the following objective function:

J({Hl}
L
l=1) =

N
∑

i,j=1

(

aij min
l=1..L

‖Hl(xi)−Hl(xj)‖
2

)

. (5)

Like LSH, CH employs multiple hash tables and we also

consider the hash functions in the form of Eqn. (1) in this

paper. But instead of using random hyperplanes w and ran-

dom thresholds b to construct the hash function, we learn

such parameters from the data. The idea behind this for-

mulation is straightforward. For two data points xi and xj ,

whose similarity aij is relatively large, we encourage that

they have similar hash codes in at least one hash table. In

the case that L = 1, say, only a single hash table is em-

ployed, the objective function becomes exactly the same

with that of SH, i.e., Eqn. (2). Ideally, all the true neigh-

bors of any query can be found by only retrieving the points

in the active hash bucket of each hash table. This is infea-

sible using only a single hash table, since it corresponds to

a single partition of the data space and the query near the

boundary of the partition is likely to get untrue neighbors.

For each hash table we impose the same constraints as SH

does, i.e., Eqn. (3) and Eqn. (4), so as to produce efficient

and compact hash codes in each hash table as well.

3.1. Algorithm

We adopt a boosting-based approach to solve this mini-

mization problem. Taking each pair (xi,xj) as an element



and a hash projection as a classifier to predict the label for

each element, the boosting scheme learns the new classifier

by paying more attention to the misclassified elements from

the previous classifiers [5]. The label of an element is 1 or

-1 according to whether the two component points of the el-

ement are sufficiently similar, i.e., bij = sgn(aij − α). A

hash projection H conducts the prediction by measuring the

similarity of the hash codes of the element’s two component

points:

PH(xi,xj) =

{

1, 1
4‖H(xi)−H(xj)‖2 < β

−1. otherwise
(6)

In a boosting paradigm, each element is associated with

a weight, and the classifier is learned in a way that the in-

accurate predictions for the elements with larger weights

incurs greater penalty. To make the subsequent classifier

(hash projection) lay more emphasis on the misclassified el-

ements by the previous classifiers, we need to assign larger

weights to those misclassified elements than the elements

being correctly classified. Different from the conventional

AdaBoost [5], which makes prediction using the weighted

sum of the outputs of the weak classifiers, our overall clas-

sifier uses the optimal decision of the member classifiers.

Because in the scenario of ANN search, instead of voting

for which point to retrieve, independent search is performed

in each hash table and the retrieved points are then merged

to generate the final search result. Hence the optimal deci-

sion made by a member hash table directly contributes to

the final search performance. Taking account of such a dif-

ference, we update the weight matrix S according to current

classifier H as:

sij =







0, bij = PH(xi,xj)
min(sij , fij), bij = 1, PH(xi,xj) = −1
−min(−sij , fij). bij = −1, PH(xi,xj) = 1

(7)

fij = (aij − α)(
1

4
‖H(xi)−H(xj)‖

2 − β).

Here, if an element is predicted correctly by current classi-

fier, its weight is set to zero and will not change any more

in the future updates. Otherwise, the prediction errors can

be categorized into two types: 1) a pair of similar points

are projected to the dissimilar hash codes and 2) a pair of

dissimilar points are projected to the similar hash codes. In

either case, we adjust the corresponding weight to reflect the

degree of the contradiction of the original similarity and the

similarity in the Hamming space. Following Eqn. (7), the

weight of the pair of similar points will always be greater

or equal than zero, while that of the pair of dissimilar points

less or equal than zero. The magnitude of the weight is

constantly decreasing, since we keep the old weight un-

changed if some previous classifier works better than the

current classifier.

Given the weighted elements, we learn a hash projection

by maximizing the following objective function:

Ĵ(H) =
∑N

i,j=1
sijH(xi)

TH(xj), (8)

where H(xi)
TH(xj) =

∑K

k=1 hk(xi)hk(xj) reflects the

similarity of the two hash codes. Here without loss of gen-

erality, we assume the data is normalized to have zero mean,

so that bk = 0 for mean thresholding. Straightforwardly,

this objective function encourages a pair of points to be pro-

jected to the similar hash codes if the corresponding weight

is large, and be projected to the dissimilar hash codes oth-

erwise.

In order to make the learned hash projection subjects to

the constraint Eqn. (3), we propose to maximize the vari-

ance of the projected data [19]:

maxW tr
[

W
T
XX

T
W

]

. (9)

where W is a d × K matrix, the rows of which is formed

of {wk}
K
k=1. By relaxing sgn(wT

x) to the signed mag-

nitude w
T
x in Eqn. (8), and combining the regularization

term Eqn. (9), we transform Eqn. (8) to the following ob-

jective function:

Ĵ(H) = tr
[

W
T
XSX

T
W + ηWT

XX
T
W

]

= tr
[

W
T
MW

]

.

where M = XSX
T + ηXX

T is a d × d matrix. View-

ing the weight matrix S as the supervised data, this can be

understood as a semi-supervised formulation. Parameter η
trades off the effects of the supervised data and the regu-

larizer. This objective function is similar to that in [19],

expect that we use a real valued weight matrix S instead of

the label matrix whose elements are {−1, 0, 1}. This prob-

lem has a closed-form solution, that wk is the eigenvector

corresponding to the k-th largest eigenvalue of M, and bk
is the median value of wkx for x ∈ X. The orthogonality

property for w approximately guarantees Eqn. (4).

The overall procedure of complementary hashing is sum-

marized in Alg. 1. We initialize the weight matrix as

sij = K(aij − α), and it is straightforward to incorporate

the prior supervised data by modifying this initialization.

3.2. Scalability Extension

There are two practical issues in Alg. 1. First, two N×N
matrices, the similarity matrix A and the weight matrix S,

are involved in the algorithm. For the large scale dataset,

computing with such huge matrices is infeasible. Second,

it produces multiple hash codes per point. The storage re-

quired to hold the hash tables grows linearly along with the

growth of the number of hash tables. Actually, the big stor-

age burden is one of the major problems that hinders LSH



Algorithm 1 Complementary Hashing (CH)

Input: data X, length of hash codes K , number of hash

tables L.

Output: hash projections {Hl}Ll=1.

Initialize the similarity matrix and the weight matrix:

aij = sim(xi,xj), sij = K(aij − α).
for l = 1 to L do

Compute covariance matrix:

M = XSX
T + ηXX

T .

Learn the hash projection Hl (i.e., {wk, bk}Kk=1):

wk is the eigenvector corresponding to the k-th

largest eigenvalue of M.

bk is the median value of wkx for x ∈ X.

Update the weight matrix S by Eqn. (7).

end for

being used in the practical applications. In this subsection,

we address these issues and present a scalable version of

CH.

To handle the issue of the huge matrices, we make use of

sparse matrices instead. To make S sparse, we only update

the weights for a small proportion of the elements, which

are more likely to be misclassified by the previous classi-

fiers. In fact, the misclassified elements are more likely to

consist of the points near the hash hyperplanes. Recall that

there are two types of errors to consider when updating the

weight matrix: the paired similar points being projected to

dissimilar hash codes and the paired dissimilar points being

projected to similar hash codes. For the first type of error, it

is easy to see that the misclassified pair of points must sat-

isfy the following two properties: 1) they are close to each

other in the data space and 2) they are separated by many

hash hyperplanes.From these observations, we can deduce

that the misclassified pair of points must be distributed near

the hash hyperplanes. For the second type of error, the mis-

classified pair consists of two dissimilar points. Consider

the hyperplanes as walls, the points with the same hash code

are confined to the same room. If two dissimilar points ex-

ist in a room, they are supposed to be close to the opposite

walls, since they are far away from each other. Therefore,

we first select a group of candidate points from the vicinity

of the hash hyperplanes:

X = {x|dl(x) < ǫ}, (10)

dl(x) = max

(

dl−1(x), min
k=1..K

|wl
kx+ blk|

)

,

where d0(x) is set to zero. X is also expressed in the matrix

form X̂, the columns of which are the points contained in

X . Note that if a point is far away from all hash hyperplanes

in one of the previous hash tables, it will be never selected.

Next, we only update the weights for the data pairs formed

by these candidate points, constructing a sparse weight ma-

trix S. To avoid computing the dense similarity matrix A,

we initialize the weight matrix with equal weight for each

data pair, i.e., sij = K .

To handle the storage issue, we treat the points unequally

so that a majority of points are only indexed by a part

of hash tables, i.e., a majority of points have less than L
hash codes. Since the hash projections, except the first one,

play a complementary role of handling the misclassified el-

ements from the previous hash projections, it is reasonable

to only keep those misclassified points in the subsequent

hash tables. Due to the boosting paradigm, the number of

misclassified elements drops rapidly when more and more

hash tables are employed. This means a majority of points

are only indexed by the first few hash tables, dramatically

reducing the overall storage to hold the hash tables. Instead

of finding the points forming the misclassified pairs, which

is quite computationally intensive, the points collected from

the vicinity of the hash hyperplanes by Eqn. (10) are con-

sidered. Because, as aforementioned, the misclassified data

pairs are more likely constituted by these points. In this

way, for a single point, if we consider the concatenation of

all its associated hash codes in the corresponding buckets

as a single hash code of this point, the length of hash codes

for different data points may be different. A point xi be-

ing indexed in Li buckets has a hash code of length KLi.

When a majority of points are only indexed by the first few

hash tables, the total storage cost
∑N

i=1 KLi will be close to

O(NK), saved lots of space compared to the fully indexing

scheme which requires O(NKL) space.

The CH’s scalability extension is described in Alg. 2.

Different from Alg. 1, both hash projections and hash tables

are constructed during the learning process.

Algorithm 2 CH’s scalability extension

Input: data X, length of hash codes K , number of hash

tables L.

Output: hash projections {Hl}Ll=1, hash tables {Tl}Ll=1.

Initialize X̂ = X, sij = K , Tl = ∅.

for l = 1 to L do

Compute covariance matrix:

M = X̂SX̂
T + ηX̂X̂

T .

Learn the hash projection Hl (i.e., {wk, bk}Kk=1):

wk is the eigenvector corresponding to the k-th

largest eigenvalue of M.

bk is the median value of wkx for x ∈ X̂.

Construct the hash table:

Tl(Hl(x)) = Tl(Hl(x)) ∪ x, for all x ∈ X̂.

Select a set of candidate points X̂ by Eqn. (10).

Update S only for the data pairs formed by the points

in X̂ according to Eqn. (7).

end for



4. Experiments

4.1. Setting

In this section, we compare the proposed method against

some representative hashing methods, i.e., LSH, SH and

USPLH, to justify the effectiveness of the proposed method.

Two datasets are used in the experiments, 20K 512-

dimensional Gist features extracted from the images of La-

belMe dataset [18] and 1 million 128-dimensional SIFT de-

scriptors extracted from random images [12]. We randomly

select 2K points from the LabelMe dataset and 10K points

from the SIFT dataset respectively as the testing queries,

and the other points are taken as the database. The ground

truth neighbors of a query are obtained by the brute force

search, and a data point is considered to be a true neighbor

if it lies in the top 2 percent points closest to the query, in

terms of Euclidean distance. For the data-dependent hash-

ing methods, i.e., SH, USPLH and CH, the whole database

is used for learning the hash functions.

The following two schemes are usually adopted by the

hashing based methods to conduct ANN search. 1) Ham-

ming ranking: The Hamming distance between the hash

codes of the query and each point in the database is cal-

culated. The points are then ranked according to the corre-

sponding Hamming distances, and a certain number of top

ranked points are retrieved. Though the complexity of Ham-

ming ranking is linear to the size of the database, it can be

implemented very fast, taking advantage of the capability

of the hardware to efficiently compute the Hamming dis-

tance. 2) Hash lookup: All the points whose hash codes

fall within a Hamming radius around the query’s hash code

are retrieved. Hash lookup usually enjoys lower complexity

than Hamming ranking. We will compare different hashing

methods using both of these schemes in the experiments.

To perform Hamming ranking for the hashing methods

with multiple hash tables, i.e., LSH and CH, we compute

the Hamming distance of a point xi and the query xq by

d(xi,xq) = min
l=1..L

1

4
‖Hl(xq)−Hl(xi)‖

2/1(xi∈Tl(Hl(xi))),

where Tl is the l-th hash table, and 1(·) is the indicator

function, which is used here to exclude the points that are

not indexed by a hash table (such case is possible for CH).

These Hamming distances are then used to perform rank-

ing. Performing hamming ranking in this way can leverage

the partial indexing structure of our hashing scheme, which

is equivalent to adopting hash codes of various length.

4.2. Implementation

LSH is implemented according to [3] and the code of SH

is obtained from the author’s Web site. The parameters of

USPLH are well adjusted with a validation dataset, which

is randomly sampled from the database. We implement two

versions of complementary hashing, CHp and CH. CHp is

implemented as described in Alg. 2. Its hash tables, except

the first one, only index a part of the points of the database,

in order to save storage. CH is almost the same with CHp

and the only differences is that all the points are indexed

in every hash table. For all the experiments, LSH, CH and

CHp employ the same number of hash tables.

4.3. Comparison with Other Methods

We first do the experiment using Hamming ranking. The

performances of the five methods, in terms of the preci-

sion versus the number of retrieved points, are illustrated in

Fig. 2 and Fig. 3. Both LSH and CH use three hash tables

in all the experiments in this subsection.

As can be seen in the figures, CH outperforms the other

methods significantly, which justifies the statement in the

Introduction Section. That is, to retrieve more points, the

methods with a single hash table, say, SH and USPLH,

need to check the nearby hash buckets by increasing the

Hamming radius to search, which makes the number of

active buckets as well as the number of irrelevant points

involved grow exponentially. The ratio of true neighbors

drops quickly along with the increase of Hamming radius

to search, undermines the precision of these methods.

In contrast, the methods with multiple hash tables simul-

taneously check the nearby hash buckets in each hash ta-

ble, which hopefully can find enough true neighbors with-

out the necessity of growing the Hamming radius too large.

LSH constructs the hash tables in a random way, resulting

in the different hash tables may suffer from severe redun-

dancy, i.e., find the same proportion of true neighbors. CH

learns the hash tables in a complementary mechanism so

that such a redundancy across the hash tables is dramati-

cally reduced. The problem is more obvious for the short

hash codes, since in that case the hash bucket usually con-

tains more points. That’s why CH outperforms the other

methods more significantly for the short hash codes, e.g.,

K = 16. The performance of CHp is worse than CH but

better than the other methods. This is understandable since

it trades off the search accuracy for the storage efficiency,

i.e., CHp requires around 60% of the storage of CH in this

experiment.

Fig. 4 illustrates the performance of the five methods us-

ing Hash lookup. The points within Hamming radius 2 are

retrieved. Both CH and CHp outperform the other methods

using the hash codes of short and moderate length. US-

PLH works better when long hash codes, say, K = 48, 64,

are used. This is probably because it relaxes the orthog-

onal constraint (Eqn. (4)) of the hash hyperplanes, which

forces the hash projection to progressively select the direc-

tions that the variance of the data is small. This problem is

more obvious when the number of hash bit grows. That’s

why, in the case that long hash codes is used, the methods
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Figure 2. Comparison of the performance using Hamming ranking on the 20K LabelMe dataset. (a), (b) and (c) are the performances for

the hash codes of 16, 24 and 32 bits respectively.
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Figure 3. Comparison of the performance using Hamming ranking on the 1M SIFT dataset. (a), (b) and (c) are the performances for the

hash codes of 16, 24 and 32 bits respectively.

with the orthogonality constraint, say SH, CH and CHp,

even work worse than LSH, which randomly selects the

hash hyperplanes, for the LabelMe dataset. Our approach

can also have such an extension by relaxing the orthogonal

constraints.

4.4. Accuracy­Storage Tradeoff

The proposed method enjoys the flexibility of trading off

the search accuracy with the storage cost. Such a trade-

off can be controlled by the two parameters, L and ǫ. L
is the number of hash tables, and fewer hash tables leads

to less storage overhead. In Fig. 5, we show the perfor-

mance of LSH and CH according to differentL for the SIFT

dataset. Generally, both LSH and CH perform better when

more hash tables are used, and their performances trend to

be converged when L > 10. Due to the data-dependent

hash functions, CH performs better even with only a single

hash table. The second and third hash tables bring signif-

icant performance gain, and the contributions of the later

hash tables become less significant. This observation is in

line with the intuition, since the hash projections are learned

in a boosting way. In summary, CH constantly outperforms

LSH in the case that the same storage is required.

In the proposed method, we can also trade off the search

accuracy and the storage cost by adjusting the parameter ǫ,

which controls the number of points to be indexed by the

hash tables. In Fig. 6, we show the performance of CHp

for different ǫ for the SIFT dataset, together with the perfor-

mance of USPLH and SH for comparison. All the methods

use 24-bit hash codes. We can see that larger ǫ leads to bet-

ter performance, since larger ǫ indicates more data points

are indexed by the hash tables. The corresponding number

of data points indexed by the hash tables is shown in Tab. 2.

In the case of small ǫ, e.g., ǫ = 0.01, the proposed method

can still perform better than USPLH and SH, with only a

little storage overhead.

Table 2. The percentage of points indexed in the three hash tables

of CHp in the cases of different ǫ, corresponding to the perfor-

mance curves in Fig. 6.

Parameter Table#1 Table#2 Table#3

ǫ = 0.01 100% 13.3% 1.9%

ǫ = 0.03 100% 34.9% 12.4%

ǫ = 0.05 100% 50.9% 26.1%

ǫ = 0.2 100% 100% 100%

5. Conclusion

In this paper, we present the complementary hashing,

which is a kind of data-dependent hashing with multiple
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Figure 4. Comparison of the performance with Hash lookup on (a) 20K LabelMe dataset

and (b) 1M SIFT dataset. The points within Hamming radius 2 are retrieved.
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cases that different numbers of hash tables

are employed.
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Figure 6. The performance of CHp in the cases of different ǫ, to-

gether with the performance of USPLH and SH for comparison.

hash tables and is able to balance the precision and recall

more effectively. The hash tables are sequentially learned

from the data in a boosting manner, so that different hash ta-

bles are likely to contribute complementary parts of the true

neighbors of the query. We experimentally illustrate the ad-

vantages of adopting multiple complementary hash tables,

compared with LSH that constructs multiple hash tables in

the data-blind way, and the methods adopting only a single

hash table.
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